West Nile Virus May Not Be A Conservation Issue in Northeastern United States

C arolee Caffrey
Audubon ScienceCenter 545 Almshouse Road
Ivyland, PA 18974
ccaffrey@audubon.org

Charles C. Peterson
 Biology D epartment

The College of New Jersey
P.O. Box 7718, 2000 Pennington Road

Ewing, NJ 08628
petersoc@tcnj.edu

INTRODUCTION
At the end of each year, tens of thousands of people across North America join with others in their communities to spend a day identifying and counting birds. Their purpose is to add their numbers to the longest-running large-scale census of avian distribution and population status: Audubon's Christmas Bird Count. W ith more than 100 continuous years of early winter population data, and in an era of dramatic environmental changes, the Christmas Bird Count (CBC) database is a potentially powerful tool for tracking changes in the size, distribution, and dynamics of bird populations in response to changing environmental conditions.
However, the very nature of the draw to CBC participants- that which makes counts so pleasurable - constrains the usefulness of CBC data in analyses of population trends. The traditional routes and methods of participants differ among counts, and this affects the numbers of birds counted; for example, routes may be primarily walked or driven, and some, but not all, participants use owl tapes to elicit responses (M cK ay et al. 2002). In addition, because individual Christmas Bird Counts occur on only a single day of each year, and weather conditions influence bird behavior and detectability, the relationship between the numbers of birds counted and actual population sizes within circles is not consistent within, or among, counts.
"We tried by three graphical and statistical methods to elucidate an effect of West Nile virus on early winter bird populations in the northeastern United States, as monitored by Christmas Bird Counts. D espite some suggestive hints, we were unable to demonstrate effects warranting conservation concern for any of the ten species examined." - Carolee Caffrey and Charles C. Peterson

Figure 1 continued. Spread of West Nile Virus through six northeastern states, 2000-2002. Darkened counties indicate WNV presence, as documented by the WNV Surveillance System (see text). Maps courtesy of the U.S. Geological Survey.

Yet the sheer volume of data is powerful in and of itself. The consistency within counts that comes from censusing the same areas each year using the same methods, often by the same people, adds integrity to the numbers. By pooling counts over large geographic areas, so as to overwhelm effects of different data collection methods and to account for the fact that counts are not independent of each other-birds in these early winter populations may be moving, and so may disappear from one count but be picked up on anothersome of the "sloppiness" inherent in the data can be ameliorated.
In light of these considerations, and to avoid placing too many demands on the
data set, we used a simple approach to look for evidence that West Nile virus (WNV), an emerging pathogen in the N ew World, has impacted native avian populations. We focused our attention on ten resident bird species in six northeastern states in the United States, the region surrounding the epicenter of WNV's original outbreak, in Queens, N Y, in 1999, and into which the virus first spread (Figurel).

West Nile virus will now forever reside in the Americas. Little is known, as yet, about the short- and long-term consequences of its New World existence, although many dead crows have documented the path of its spread 57,053 have been collected since 1999
(Eideson et al. 2001; Centers for Disease Control and Prevention 2002a, b; M cLean et al. 2002). Yet sick birds tend to seek out quiet places, and crows get very sick and quiet when infected by West Nile virus (N. Komar and R. Mclean, personal communications). Thus most dead crows have probably gone unnoticed, as have probably the vast majority of the bodies of smaller, and more cryptic, birds. Coupled with the fact that many public agencies did not collect dead birds other than corvids and raptors, little information exists on the responses of different species to exposure to West N ile virus.
Can such information be gleaned from CBC data?

METHODS

We pooled Christmas Bird Count data from six states (Connecticut [CT], M assachusetts [M A], New Jersey [NJ], N ew York [N Y], Pennsylvania [PA], and Rhode Island [RI]) for each of the years 1989-2002, for each of ten "species": Red-tailed Hawk (Buteo jamaicensis), Great Horned Owl (Bubo virginianus), D owny Woodpecker (Picoides pubescens), Blue Jay (Cyanocitta cristata), American Crow (Corvus brachyrhynchos), Blackcapped and Carolina chickadees combined (Poecile atricapilla and P. carolinensis, respectively), W hite-breasted Nuthatch (Sitta carolinensis), Northern M ockingbird (Mimus polyglottos), Northern Cardinal (Cardinalis cardinalis), and House Sparrow (Passer domesticus). Eight of the ten species (all but crows and chickadees) were chosen for the analyses because populations tend to be nonmigratory and individuals do not form large winter aggregations, both of which could confound attempts to detect changes in population sizes over time. Crows and chickadees were chosen because anecdotal evidence suggested these birds were being heavily impacted by W N V, and for crows, two field studies of marked populations documented high W N V-related mortality in 2002 (approximately 40 percent: C affrey et al. 2003; approximately 30 percent in one particular area: K.J. McGowan, A.B. Clark, and D.A. Robinson, unpublished data).

CBC counts for crows can be strongly influenced by the tendency of crows to form large winter foraging flocks and the presence (in some circles and years) of huge winter roosts or pre-roost aggre gation areas, all of which may include many migratory individuals (Verbeek and Caffrey 2002). In an attempt to restrict our analysis to resident crows, we also analyzed an edited data set including only absolute counts of 2500 crows or less. (A third analysis of counts with 1500 or fewer crows yielded qualitative ly identical results and is not reported.) Similarly, CBC counts of Great H orned O wls are contingent on the variable amount of "owling effort" employed in
different circles and years (M CK ay et al. 2002). Thus to better standardize owling effort, we analyzed a second data set comprising only absolute counts of 35 or fewer Great H orned O wls.

D ata from all non-pelagic count circles in all six states were potentially included in the analyses. We used data from all circles where counts had occurred in at least eight of the ten years 1989-1998 ($\mathrm{n}=191$). Within these circles, we excluded the species counts for species that had not been observed in at least five of the ten years prior to the arrival of West N ile virus. T hus the following counts for the following species were excluded:

- Red-tailed H awk: M ASB, N YSL, RIBI. - Great H orned O wl: M AM V, M AN A, N YBR, N YCR, NYH F, NYNA, NYOT, NYQU, NYSB, NYSL, N YSN, NYWA, PAPL, PAVB, RIBI. - N orthern M ockingbird: N YBM, NYCL, NYCR, NYEZ, NYJA, NYJG, NYOO , NYOS, NYOT, N YPL, N YSB, N YSH, NYSL, NYSO, NYWA, PABC, PABU, PABV, PACR, PADU, PAEM, PAER, PALN , PAM A, PAPL, PARC, PATH, PAW M , PAW R.

To adjust raw species counts for differential search effort among years and circles, we first used Pearson correlation analysis to determine, for each species, the stronger covariate of nonzero count data: party-hours or party-miles. On the basis of these results (Table 1), counts of

Red-tailed H awks, Great H orned Owls, and chickadees were normalized by party-miles; all other data sets were normalized by party-hours. Although more sophisticated statistical methods exist for adjusting CBC counts for effort (e.g., Butcher and McCulloch 1990, Sauer and Link 2002), we felt that the wide variation concomitant with the large geographic and temporal extent of the data analyzed here justified the calculation of simple ratios (birds/party-hour and birds/party-mile), an approach that has been used historically (Sauer and Link 2002) and in several recent analyses (e.g., Farnsworth 2002, Pranty 2002)

N ormalized data were first plotted as calendar-year averages for each species. N ext, we sorted the data relative to the year of arrival of WNV in the county containing each CBC circle's center (see below) and plotted subsets of the data containing circles where W N V had been continuously present for four years ($\mathrm{n} \leq$ 36 circles, depending on species), three years ($\mathrm{n} \leq 72$), two years ($\mathrm{n} \leq 8$), and one year ($\mathrm{n} \leq 38$); a fifth subset comprised circles ($\mathrm{n} \leq 35$) where W NV was detected one year but not the next, and then again the following year (much of upstate N ew York; see Figure 1).

West Nile virus surveillance data
The West Nile Virus Surveillance System is a collaborative effort involving the Centers for Disease Control and Prevention (CDC), the United States

Table 1. Correlations between raw species counts and indices of search effort for 191 CBC circles over 14 years. Shown are Pearson correlation coefficients (r) for bird counts versus indicators of search duration (party-hours) and geographic coverage (party-miles). Two data sets were analyzed for Great Horned Owls and American Crows (see text).

Species	Party-hours	Party-miles
Red-tailed Hawk	0.550	0.587
Great Horned Owl (all data)	0.340	0.373
Great Horned Owl (<35)	0.401	0.411
Downy Woodpecker	0.755	0.595
Blue Jay	0.566	0.518
American Crow (all data)	0.219	0.146
American Crow (<2500)	0.483	0.446
Chickadees	0.510	0.531
White-breasted Nuthatch	0.597	0.540
Northern Mockingbird	0.671	0.387
Northern Cardinal	0.668	0.503
House Sparrow	0.600	0.458

Geological Survey (USGS), the U.S. Department of Agriculture, Animal and Plant H ealth Inspection Service (USD A, APH IS), state wild life agencies, and state and local health and vector control agencies, to monitor the geographic and temporal spread of West N ile virus in the United States. Five different surveillance activities allow the monitoring of the occurrence of West Nile virus by county in: 1) humans; 2) horses, dogs, and cats; 3) wild birds; 4) sentinel chickens; and 5) local mosquito populations (see CDC 2001 for additional information).
Data on theoccurrence of W NV in the counties of the six states-CT, M A, NJ, NY, PA, and RI-for the years 19992002, were obtained from the CD C. We identified whether WNV was detected, or not, in any of the surveillance cate gories for each county in each year to determine the year of "arrival" of the virus to each county (Figure 1). From surveillance data we also determined, for each county in each year, the percent of immediately neighboring counties with detected WNV activity. Nantucket Island (MA), M artha's Vineyard (MA), and Block Island (RI) were all scored as having no surrounding counties "positive" for all four years- they are isolated by water from areas where WNV was present-but Staten Island (N Y) was given a value of one (all surrounding counties had detectable W NV activity) for 1999-2002 (Figure 1) because of the short distance to neighboring counties and a connecting bridge across which the virus could potentially travel in various hosts and vectors.
Latitude and longitude coordinates were used to place each circle's center within a particular county (Figure 2).
For G reat H orned O wls and American Crows, we looked to seeif the numbers of human WNV cases within counties and the percent of immediately neighboring counties with WNV activity in the pre ceding year were related to year-to-year changes in CBC-estimated population sizes (expressed both as birds/party-mile and as population percentages). Because, especially in 2002, many county health

Figure 2. Locations of the centers of CBC circles used in analyses.
departments ceased collecting and testing dead birds once one or two crows teted positive for WNV, and because horses and testing programs for sentine birds and mosquitoes were unevenly distributed throughout our study area, these surveillance categories were not considered valid quantitative indices of the prevalence of W NV within counties.

RESULTS AND DISCUSSION
Temporal patterns in population changes
We began by asking the basic question: Do Christmas Bird Count data
show declines in bird populations that might be attributable to the effects of West Nile virus? As a simple first approach, we examined temporal changes in CBC counts of ten resident species in six northeastern states over the ten years preceding the 1999 arrival of WNV to North America and the four subsequent years (Figure 3). We reasoned that a W NV effect strong enough to warrant conservation concern would manifest itself as a detectable decline, beginning in 1999 and increasing over subsequent years as W NV spread further
throughout our study area. In light of the apparent disappearance of WNV from many counties in 2001 and its reappearance in 2002 (Figure 1), a population increase in 2001 could also be consistent with a WNV effect. We summarize our examination of Figure 3 for these patterns as follows.

D espite an overall long-term increase in population size, Red-tailed H awks showed post-W N V population decreases in 2000 and 2002, separated by an increase in 2001 (Figure 3a). Although this is at least consistent with a hypothesized W NV effect, a similarly strong decline occurred in 1996.

Great H orned Owls show declines since 1998 (except for 2001) whether owling-intense CBC circles are included (Figure 3b) or not (Figure 3c); further, these declines reversed general upward trends over the preceding decade. These patterns are highly consistent with pre dictions for W N V effects. H owever, owl populations also declined in 1996.

Downy Woodpecker populations have maintained relative stability over the study period (Figure 3d), with small declines in three of the four W N V years and a small increase in 2001, yet they also declined in 1996 and particularly in 1990.

Both chickadees (species combined; Figure $3 e$) and W hite-breasted Nuthatches (Figure 3f) show steep declines in 2000 and 2002 and compensatory increases in 2001, and the years subsequent to W N V appear particularly variable, yet population sizes for these years do not differ greatly from those of years prior to W N V. N ote that both of these species also declined in number between 1995 and 1996.

Blue Jays have been anecdotally purported to be particularly vulnerable to W NV , but in contrast to large fluctuations in population sizes prior to W N V (declines in 1994, 1996, and especially 1990, and sharp increases in 1993 and 1995), Blue Jay populations in the years subsequent to the arrival of W N V have remained remarkably consistent in size (Figure 3 g).

American Crows, the harbingers of the arrival and spread of WNV in N orth America, are highly susceptible to the virus (Komar et al. 2003). Thousands of dead crows have been collected since 1999, and studies suggest that some resident populations have been severely affected by W N V-induced mortality. The entire data set of crow counts indeed shows an unprecedented and sustained decline since 1999 (Figure 3h). Also noteworthy is the
marked decrease in variance among circles (shown as smaller standard error bars) in recent years, suggesting that the decline is due in part to fewer, or smaller, foraging flocks, winter roosts, or pre-roost aggregations being included in recent counts. In an attempt to remove the influence of migratory crows, we plotted a second data set excluding the largest absolute counts. Here, although a slight recent decline reverses a previous long-term increase,

Figure 3. Population trends, as indicated by Christmas Bird Count data, in 12 data sets for 10 species of birds from 1989 through 2002. Shown are annual means ± 1 standard error ($\mathrm{n} \leq 191$ CBC circles) of bird counts normalized for either party-hours or party-miles (see text). The vertical dotted lines denote the arrival of West Nile virus in North America, preceding the 1999 CBC.
the trend subsequent to $W N V$ is relative stability (Figure 3i).

Plots for the remaining passerine species (Northern Mockingbirds, Northern Cardinals, and House Sparrows) share some features in common: no suggestion of aW N V effect, a good year in 1995, and
relatively steep declines in 1990 and 1996. M ockingbird populations also peaked temporarily in 1999.

In general, we found only weak support for the hypothesis of a strong effect of W N V on bird populations. Although several species declined steeply in 2000

Figure 4. Population trends, as indicated by Christmas Bird Count data, in 4 subsets of 12 data sets for 10 species of birds, with data aligned relative to the local arrival of West Nile virus (see text). Mean normalized CBC counts are depicted for the year preceding and up to four years following local arrival of WNV, with the long-term (9-year) previous mean as a benchmark. Symbols: filled diamond, the mean CBC count for all circles and years from 10 to 2 years prior to the local arrival of WNV ($\mathrm{n} \leq 191$ circles); open circles (subset 1), CBC circles with only one year of WNV presence ($n \leq 38$); filled circles (2), CBC circles with three continuous years of WNV presence ($n \leq 72$); open triangles (3), CBC circles with four continuous WNV years ($\mathrm{n} \leq 36$); filled triangles (4), CBC circles with two WNV-positive years separated by a year in which it was not detected via the WNV Surveillance System ($n \leq 35$).
(Figures 3a,b,e,f,j), the second year of W NV in North America and a year of considerable spread throughout our study area (Figure 1), similar synchronized declines occurred in 1990 and 1996, some of which were even more severe than declines in 2002. (The presumably climatic causes of those declines are outside the scope of this article, but worthy of elucidation.) O nly the data sets for Great H orned Owls (Figures $3 b, c$) and the larger set for American Crows (Figure 3h) appear to indicate population declines possibly attributable to the spread of W N V.

Population changes relative
to local West Nile virus status
Our preliminary examination of annual CBC counts (Figure 3) included several years (1999-2001) during which W NV had not yet reached large regions of our study area. It was therefore possible that a subtle but consistent effect of W NV on local bird populations could have been obscured by pooling counts for regions with and without local W NV presence. We thus used surveillance data obtained from the CDC to realign the CBC count data for each circle relative to the first year of documented local (county) WNV presence, instead of by calendar year. O ur intention was to compare changes in mean counts between the years before and after the arrival of W N V. H owever, realignment by the timing of WNV arrival resulted in different groups of circles being included in different "years," and consequent differences in sample sizes. We therefore plotted means for four subsets of the data for each species: 1) circles in counties where W NV first arrived in 2002, 2) circles in counties where W N V arrived in 2000 and persisted over the next two years, 3) circles in counties where WNV arrived in 1999 and persisted over the next three years, and 4) circles in counties where W NV arrived in 2000, was not recorded in 2001, and reappeared in 2002 (Figure 4). (Only eight circles were located in counties where W N V arrived
in 2001; the means for this subset arenot shown.) We predicted that these plots would reveal aWNV effect by exhibiting 1) consistent declines in population sizes in the first or second years of local W NV presence (i.e., parallel decreases in all subsets between "years" -1 and +1 , or +1 and +2) and 2) a difference in temporal pattern between subset 4 and the other subsets (specifically, a possible Year 2 increase in subset 4 versus continuing dedines in subsets 2 and 3).

Examination of Figure 4 yields few robust examples of the predicted effects of W NV. Great H orned Owls (Figure 4b) declined consistently among subsets of the data in the first year following the arrival of W N V, and all subsets eventually dropped below the long-term mean, but the "Year 2" difference between subsets 2 and 4 was in the direction opposite from that predicted (i.e., the population declined where W NV "disappeared" and remained stable where the virus persisted). The count-limited dataset for owls (Figure 4c) was more ambiguous. Blue Jays (Figure 4g) did not decline over the first or third years of W N V, but did decline consistently over the second year, even in counties from which W N V disappeared in 2001. The count-limited data for American Crows (Figure 4i) suggest a general post-W NV decline, except in circles where WNV disappeared for a year. Otherwise, these plots do not suggest a strong effect of WNV on early winter populations of these bird species in this area. Recent counts are all consistent with long-term, preW NV means. In several cases, evident declines are calendar-year decreases that here are staggered over different
"W NV years" for the data subsets. For example, in White-breasted Nuthatches (Figure 4 f), the decline in subset 3 between WNV years 3 and 4 is also manifested in subsets 2 and 4 between WNV years 2 and 3 , and in subset 1 between years -1 and +1 . We interpret such consistent calendar year effects (in this case, the decline between 2001 and 2002) as more likely due to climatic conditions than to WNV.
To summarize, qualitative analyses of the data presented in Figures 3 and 4 do not indicate a strong negative effect of WNV on populations of these resident bird species of the northeastern United States. O nly Great Horned Owls and American Crows exhibited temporal patterns that were even suggestive of such an effect.

Relationships between population changes and indices of West Nile virus
If the relatively weak patterns we discerned in the data for owls and crows did, in fact, reflect an effect of WNV, we predicted that year-to-year population changes should track the local intensity of W N V activity. This prediction was tested by correlating annual population changes with annual, coun-ty-based indices of WNV prevalence among humans and the proportion of surrounding counties that reported WNV presence during that year. We expressed population changes in both absolute (birds/party-mile) and relative (percent) terms, and examined the correlations for all changes and for declines only. We report only relative changes, the more meaningful of the two measures.

Although a few correlations are "statistically significant" (Table 2), suggesting a possible link between population changes and local WNV intensity, all of the relationships were quite weak ($r \leq 0.15, \mathrm{P} \geq 0.02$); too weak to survive Bonferroni adjustment. We conclude that there is no strong linkage between available indices of WNV intensity and CBC-documented changes in bird populations.

CONCLUSIONS

We tried by three graphical and statistical methods to elucidate an effect of West Nile virus on early winter bird populations in the northeastern United States, as monitored by C hristmas Bird Counts. Despite some suggestive hints, we were unable to demonstrate effects warranting conservation concern for any of the ten species examined. Even the species exhibiting population declines most consistent with a hypothesized WNV effect (chiefly Great Horned Owls and American Crows) yielded only suggestive, not persuasive, evidence.

These negative results may be truly indicative of a lack of largescale negative effects of W NV on N orth American bird populations. That would be good news. H owever, in light of the acknowledged inherent weaknesses of CBC data, it is necessary to consider other potential reasons for false negatives.

Perhaps, for example, the early winter data provided by the CBC are not appropriate for detecting declines in breeding populations; individuals of even traditionally nonmigratory species may move around during the winter.

Data set	All changes		Declines only	
	Human cases	Surrounding counties	Human cases	Surrounding counties
Great Horned Owl (all data)	-0.027 (0.581)	0.041 (0.406)	0.106 (0.108)	-0.067 (0.312)
Great Horned Owl (<35)	-0.019 (0.701)	0.050 (0.318)	0.107 (0.103)	-0.069 (0.293)
American Crow (all data)	-0.026 (0.549)	-0.072 (0.103)	-0.122 (0.043)	-0.138 (0.022)
American Crow (<2500)	-0.114 (0.020)	-0.093 (0.058)	-0.136 (0.041)	-0.150 (0.025)

Possibly population "floaters"- peripheral individuals without breeding or wintering territories- of some species have moved in to replace lost territory owners, as happens regularly in birds. And perhaps, despite our efforts, persistent variation in crow counts due to migratory individuals and crow sociality, and persistent variation in owl counts due to variable owling effort, are masking underlying patterns of decline. Certainly our negative results for these species are at odds with documented declines within discrete populations of crows (Caffrey et al. 2003; K.J. McGowan, A.B. Clark, and D.A. Robinson, unpublished data) and anecdotal reports of high morbidity and mortality among Midwestern hawks and owls in 2002 (e.g., H opey 2002).
However, we do not wish to trivialize the contribution that CBC data can make to the ability to track avian population trends. Indeed, our analysis revealed several previously unreported (to our knowledge), relatively large population changes that were synchronized among several species and that beg explanation (e.g., increases in 1995, declines in 1990, 1996, 2000, and 2002; see Figure 3). Thus the lack, so far, of a strong CBC signal associated with the timing of WNV 's arrival and spread constitutes grounds for cautious optimism.

ACKNOWLEDGMENTS

We thank D. O'Leary and J. Lehman (CDC) for WNV surveillance data, and S. Guptill (USGS) for maps (Figure 1) depicting W NV activity by county for the years 1999-2002. We also thank R. Gibson for statistical advice, and C. Sanchez and J.P. Cecil for help with Figures 1 and 2.

LITERATURE CITED

Butcher, G.S. and C.E. M cCulloch. 1990.
Influence of observer effort on the number of individual birds recorded on Christmas Bird Counts. In survey designs and statistical methods for the estimation of avian population
trends (J.R. Sauer and S. Droege, eds.). U.S. Fish and Wildlife Service, Biological Report 90(1): 120-129.
C affrey, C., T.J. Weston, and S.C.R. Smith. 2003. High mortality among marked crows subsequent to the arrival of West N ile virus. Wildlife Society Bulletin, in press.
Centers for Disease C ontrol and Prevention (CDC). 2001. Epidemic/epizootic West Nile virus in the United States: revised guidelines for surveillance, prevention and control. http://www.cdc.gov/ncidod/ dvbid/westnile/resources/ wnv-guidelines-apr-2001.pdf
CDC. 2002a. West Nile virus activi-ty-U United States 2001. M orbidity and M ortality Weekly Report 51(23): 497-501. www.cdc.gov/mmwr/pre view/mmwrhtml/mm5123a1.htm CDC. 2002b. M orbidity and M ortality Weakly Report 51(50): 1129-1133. www.cdc.gov/mmwr/preview/mmwr html/mm5150al.htm
Eideson, M ., N . Komar, F. Sorhage, R. Nelson, T. Talbot, F. M ostashari, R. M cLean, and the West Nile virus Avian M ortality Surveillance Group. 2001. Crow deaths as a sentinel surveillance system for West N ile virus in the northeastern United States, 1999. Emerging Infectious D iseases 7(4): 615-620. www.cdc.gov/ncidod/ eid/vol7no4/eidson2.htm
Farnsworth, A. 2002. Watchlist species as viewed through the C hristmas Bird Count database. American Birds 56 (102nd count): 29-31.
H opey, D. 2002. "West Nile virus may be killing raptors by the thousands: M assive die-off of birds strikes M idwest." Pittsburgh Post-Gazette. 0 ctober 20.
Komar, N., S. Langevin, S. Hinten, N . Nemeth, E. Edwards, D. H ettler, B. Davis, R. Bowen, and M. Bunning. 2003. Experimental infection of N orth American birds with the New York 1999 strain of West Nile virus. Emerging Infectious Diseases 9 (3): 311-323. www.cdc.gov/ncidod/ EID/vol9no3/02-0628.htm

M cK ay, K.J., J.W. Stravers, P.C. Petersen, C.J. Kohrt, J.S. Lundh, and G.V. Swenson. 2002. Long-term trends of raptors on CBCs in the Midwest. American Birds 56 (102nd count): 15-21.
McLean, R., S.R. U bico, D. Bourne, and N. Komar. 2002. West Nile virus in livestock and wildlife. Current Topics in M icrobiology and Immunology 267: 271-308. www.ncbi. nlm.nih.gov/entrez/query.fcgi?cmd= Retrieve\& db=PubM ed\& list_uids=12 082994\& dopt=A bstract
Pranty, B. 2002. The use of Christmas Bird Count data to monitor populations of exotic birds. American Birds 56 (102nd count): 24-28.
Sauer, J.R. and W.A. Link. 2002. Using Christmas Bird Count data in analysis of population change. American Birds 56 (102nd count): 10-14.
Verbeek, N.A.M . and C. C affrey. 2002. American Crow (Corvus brachyrhynchos). In The Birds of North America, No. 647 (A. Poole and F. Gill, eds.). The Birds of N orth America, Inc., Philadelphia, PA.

